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Progress report for the period of Sep 2011 to Sep 2012

Introduction
Bone is a highly vascularized tissue that is reliant on the close spatial and temporal

connection between blood vessels and bone cells to maintain skeletal integrity. Several
experimental studies have shown that angiogenesis plays a vital role in skeletal development,
repairing fractured bone and in response to mechanical loading (ML). These include: 1) Studies
using a distraction osteogenesis model (DO) have shown that intramembranous bone formation is
induced by the application of gradual mechanical distraction across an osteotomy defect, which
reveals not only an increase in osteogenesis but also an increase in expression of several
angiogenic factors (1). 2) Treadmill-running in rats displayed bone marrow angiogenesis
concomitant with increase in osteogenesis (2). 3) Studies using mandibular DO model have shown
that high frequency traction provides a proper mechanical environment for angiogenesis
contributing to enhanced bone formation (3). These findings illustrate that angiogenesis,
osteogenesis and ML are tightly associated.

Recently, newly discovered MicroRNA’s (miR) belonging to a small class of RNA molecules
have received considerable attention because of the ability to act as negative regulators of gene
expression. RNA of this type regulates gene expression at the post-transcriptional level by either
degradation or translational repression of a target mRNA. So far, at least 500 miR have been
discovered of which few are linked to pathogenesis of disease (heart disease, cancer and
schizophrenia) as evident from human and animal studies (4-6). In particular, reports have shown
that microRNA regulates angiogenesis. Since angiogenesis and osteogenesis is tightly coupled, we
predict that inhibiting microRNA that control angiogenesis can maximize the benefits of exercise on
skeleton.

Our second aim in the proposed grant was to test if blocking microRNA regulating
angiogenesis increases the benefits of exercise on skeleton.

Specific aim 2: Determine the consequence of blocking identified MicroRNA using antisense oligos
complementary to the specific MicroRNA that control angiogenesis on loading induced bone
formation.

1) Using an in vitro model, determine the efficiency of antagomirs specific for identified
MicroRNA that control angiogenesis.

2) Based on in vitro results and specific aim 1, we will inject mice with antisense oligos
(antagomirs) specific for MicroRNA that control angiogenesis.

3) Subject this experimental group and control mice to axial loading for 2 weeks.
4) Measure ML induced changes in skeletal parameters and bone strength by Micro-CT.
5) Measure cellular processes contributing to osteogenesis and angiogenesis by performing

histology.

Findings
During the first year of the funding, using expression profile, we have identified microRNAs that are
associated with angiogenesis and osteogenesis. Although many were identified, the issue of which
microRNA having a high negative effect on osteogenesis and angiogenesis needs further
evaluation. Since testing the biological effect of each identified miR with specific antagomir is
expensive, we focused on the miR-92 (7) for several reasons, which include 1) miR-92 has been
reported to be a negative regulator of angiogenesis. 2) Over expression of miR-92 blocked
angiogenesis in human endothelial cells and that blocking miR-92 recovered mouse from limb
ischemia injury as well as from myocardial infarction. Therefore, based on these observations, we



predicted that inhibiting MicroRNA-92 that control angiogenesis can maximize the benefits of
exercise on skeleton.

Animals: To test the above prediction, 9 week old female C57BL/6J mice were purchased from
Jackson Laboratory. All the mice were housed under the standard conditions of 14-hour light and
10-hour darkness, and had free access to food and water. The experimental protocols were in
compliance with animal welfare regulations and approved by local IACUC.

Antagomir designing: To block miR-92, a microRNA that is well known in regulating angiogenesis,
single stranded RNA antagomir sequences against miR-92 and control antagomir sequence were
ordered from IDT DNA technology. The sequences were obtained from previously published
manuscript (7). In the miR-92 antagomir and control antagomir, the 2’O RNA base was methylated
followed by first two bases and last 3 bases were phosphorothiated to increase the stability of
antagomir from degradation. In addition, a cholestrol-TEG was added at the 3’ for easy entry of
antagomir into the cells. The sequence of antagomir for miR-92a is as follows: 5`-
CAGGCCGGGACAAGUGCAAUA-3`) and Antagomir-Co (5`- AAGGCAAGCUGACCCUGAAGUU-
3`.

Four-point bending in antagomir treated mice and micro-CT measurement of skeletal parameters:
To test, if blocking miR-92 maximizes the benefit of exercise on bone, we performed ML using four-
point bending method on 10 week old female B6 mice for a period of 2 weeks (8-10). We choose
this model and the load based on our findings that showed high osteogenic and angiogenic effect in
response to loading during the first year of funding. We applied a 9N load on the right tibia of B6
mice over the muscle and soft tissue at 2Hz frequency, 36 cycles once per day under inhalable
anesthesia (5% Isoflurane and 95% oxygen) for a period of 2 weeks (6 days/week with 1 day rest).
The left tibia was used as contra-lateral internal control.

Several studies have used antagomir to block target microRNA at a concentration ranging
from 0.33 mg to 100 mg/kg of bodyweight in animal models. The issue of whether the doses used
are optimal and specific to target microRNA has not been examined thoroughly. However, one
potential concern with the use of high dose of antagomir is that antagomir at high concentrations
could produce non-specific effects by inhibiting other genes besides target gene. Since reports
have shown 0.33- 1.0- and 3.3- mg/kg of dosage was effective in exhibiting the biological response
in tissues (11), we chose a dose of 2.7mg/kg of bodyweight antagomir for our study. To determine
whether blocking miR-92 will maximize the benefits of exercise on bone via increasing
angiogenesis, we injected antagomir against miR-92 and control antagomir via retro-orbital
approach under 5% Isoflurane and 95% oxygen anesthesia for a period of one week (3 alternate
days) while the mice were subjected to loading regimens. After two weeks of loading, we measured
mice body weight and tissues weights after euthanization followed by tibias were collected to
evaluate if there is an increase or decrease in loading induced changes in skeletal parameters by
using micro-CT (Scanco Invivo CT40, Switzerland) and histology (10).

After two weeks of loading, we found no significant difference in the body weight between
control and experiment group (Table-1). Similarly, we did not see any difference in the tissue
weights between the control and experimental groups suggesting that there are no side effects
caused by the antagomir injections (Table-2).
Table -1 Body weight and tissue weight measurements in mice treated with antagomir
(experimental group) vs. control antagomir (control group) after two weeks of four-
point bending in 10 week old female B6 mice.

Tissues Control group (grams) Experimental group (grams)
Body weight 19.6 ± 0.1 19.7 ± 0.26
Kidney 0.10 ± 0.006 0.098 ± 0.005
Liver 0.88 ± 0.02 0.83 ± 0.04
Heart 0.10 ± 0.006 0.11 ± 0.010
N=4, Values are mean ± SD.



Figure 1 – Micro-CT measurements of bone parameters (diaphysis area) after 2 weeks of
loading in female B6 mice treated with control antagomir and antagomir against miR
The y-axis corresponds to percent change and x
volume, BV/TV: Bone volume/Tissue volume and density: total bone density. Values are
mean ± SD, N=4. Ap<0.05 vs. unloaded bones.
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50U/µl RNasin, 1µl of 5X RT primer, 6.78µl of Nuclease free water and 0.5µl of 10ng RNA. 5µl of
the five times diluted first strand cDNA reaction was subjected to real time PCR amplific
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CT analysis revealed that two weeks of ML increased tibia tissue volume (TV), bone
volume/tissue volume (BV/TV) and bone density by 6-15%, as expected, in the control antagomir
treated mice. Surprisingly, similar increases in TV (16%), BV/TV (9%) and bone density (7%) were
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microRNA specific real time PCR primers. Approximately 20µl of reaction volume was used for the
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assay that consisted of 1X [10µl] Universal SYBR green PCR master mix [Master mix consists of
SYBR Green dye, reaction buffers, dNTPs mix, and Hot Start Taq polymerase] [Applied
Biosystems, Foster City, CA], 5
conditions consisted of an initial denaturation at 95ºC for 10 minutes followed by 40 cycles of
denaturation at 95ºC for 15 seconds (sec), annealing and extension at 60ºC for 1 minute, and a
final step melting curve of 95ºC for 15 sec, 60ºC fo
analyzed using SDS software, version 2.0, and the results were exported to Microsoft Excel for
further analysis. Data normalization was accomplished using the
the normalized values were subjected to a 2
antagomir and control antagomir treated mice

Surprisingly, we failed to detect
genes (VEGF, CD31 and Tie2) in heart
3). We offer the following potential explanations for the negative results in this study: 1) the dosage
of antagomir used in our study was
weight vs. 8 mg/kg of body weight)
change in the phenotype or whether the inhibitory effect on angiogenesis seen in the previous study
was due to secondary effects on other genes require further evaluation. 2) The expression levels of
angiogenic genes were examined only at one time point and additional time points may need to be
examined. 3) Earlier study measured an increase in angiogenes
expression levels of vascular genes

The data presented above are
the difference between externally loaded versus non
(StatSoft, Inc version 7.1, 2005) to perform the analysis and the results were considered significant
at p<0.05.

assay that consisted of 1X [10µl] Universal SYBR green PCR master mix [Master mix consists of
SYBR Green dye, reaction buffers, dNTPs mix, and Hot Start Taq polymerase] [Applied
Biosystems, Foster City, CA], 50nM of primers, 15µl of water, and 5µl of template. The thermal
conditions consisted of an initial denaturation at 95ºC for 10 minutes followed by 40 cycles of
denaturation at 95ºC for 15 seconds (sec), annealing and extension at 60ºC for 1 minute, and a
inal step melting curve of 95ºC for 15 sec, 60ºC for 15 sec, and 95ºC for 15 sec.

analyzed using SDS software, version 2.0, and the results were exported to Microsoft Excel for
further analysis. Data normalization was accomplished using the endogenous control [β
the normalized values were subjected to a 2-∆∆Ct formula to calculate the fold change between the
antagomir and control antagomir treated mice.

Surprisingly, we failed to detect any significant changes in the expression lev
genes (VEGF, CD31 and Tie2) in heart, liver or skeletal muscle at the time points examined

. We offer the following potential explanations for the negative results in this study: 1) the dosage
of antagomir used in our study was slightly less compared to earlier study (2.7 mg/kg of body
weight vs. 8 mg/kg of body weight) (7). The issue of whether higher dosage is required to see a
change in the phenotype or whether the inhibitory effect on angiogenesis seen in the previous study

as due to secondary effects on other genes require further evaluation. 2) The expression levels of
angiogenic genes were examined only at one time point and additional time points may need to be
examined. 3) Earlier study measured an increase in angiogenesis by blood flow while we examined
expression levels of vascular genes.

above are given as mean ± SD. Standard t-test was used to compare
the difference between externally loaded versus non-loaded bones. We used Statistica software

atSoft, Inc version 7.1, 2005) to perform the analysis and the results were considered significant
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r 15 sec, and 95ºC for 15 sec. The data were
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Ct formula to calculate the fold change between the

significant changes in the expression levels of vascular
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Figure 3: Expression levels of vascular genes
with antagomir against mir
corresponds to fold change and x

: Expression levels of vascular genes (CD31, Tie-2 and VEGF) in mice treated
with antagomir against mir-92 vs. mice treated with control antagomir.
corresponds to fold change and x-axis represents different tissues. Values are mean ±SD,

in mice treated
The y-axis

axis represents different tissues. Values are mean ±SD,

N=4.



Conclusion
Based on our above findings, we conclude that systemic administration of antagomir against miR-
92, while it reduced expression levels of miR-92 in the skeletal muscle, liver and heart; it did not
significantly alter either angiogenic or osteogenic response, thus suggesting possible redundancy in
miR-92 regulation of angiogenesis.

Current Progress
Since there is a discrepancy between our findings and the published report, we focused on
generating bone specific microRNA knockout mice to test the role of the microRNAs involved in
regulating angiogenesis and osteogenesis in relation to exercise.

Reportable Outcome
1. Anthony S, Santisuk R, Xing W, Kesavan C. Systemic administration of an antagomir

designed to inhibit miR-92, a regulator of angiogenesis, failed to modulate skeletal anabolic
response to mechanical loading. Physiol Res. 2012 Dec 13.
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